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I. 1INTRODUCTION

Two images of the same region are said to be registered when equivalent

geographic points of the scenes in the two images coincide.

Rectification is a congruencing process by which the geometry of the

image is made planimetric, i.e., where the two images of the same scene are
transformed so that the size and shape of any object on one image is the same
as the size and shape of that object on the other image. Image rectification
allows a direct comparison of diffcrent images of the same scene either
originating from different sensors or from the same sensor but under different

conditions (e.g., orientation, season, weather, time of day).

Raw, unprocessed images cannot be registered directly because of differ-
ences in viewing conditions, and because of radiometric and geometrical dis-
tortions (warping). A preprocessing or "unwarping” of the image data hefore
registration and information extraction, in the form of geometric and
radiometric corrections and data processing (interpolation, resampling,
reformatting), is necessary. This process of rectification, in addition to

registration and change detection, is the subject of this report.

The accurate rectification/registration of data is a key requirement for
several applications such as intelligence gathering, advanced vehicle

guidance, change detection, and classification of remotely sensed data.

A, STUDY OBJECTIVES

The objective of the study is to evaluate the feasibility of a rectifi-
cation system having pixel (picture element) to subpixel registration accuracy
and semiautomatic operation in a multisensor ervironment. Special considera-
tion was given to ground-based, mobile, compact systems with near real-time

processing.

The purpose of the first phase of this study was to investigate the
general process of rectification/registration of remotely sensed, high resolu-
tion data in a multisensor environment and in the presence of miltitemporal

geometric distortions. Specific sensors under consideration in this phase of
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the study are very general and generic in nature, covering the whole spectrum
from optical/near infrared (IR) to middle IR, thermal IR, and microwave,
including both active types (sensor providing its own source of electro-
magnetic radiation) and passive types (sensor using naturally reflected energy

from the terrain).

In the second phase of the study, the emphasis was placed on the use of
N synthetic aperture radar (SAR) for imaging as a sole sensor. The purpose was
to study the spe-ific qualities and problems of SAR matching and registration
i techniques ian order to analyze the state of the art of rectification

algorithms and to propose some future tasks in this area.

L B. STUDY APPROACH

To achieve the objectives, a step—by-step approach was taken, and the

following tasks have been accomplished:

° Literature survey of rectification and registration techniaques in use
today and identification of the state of the art.

o Identification and study of candidate techniques or a combination of
several algorithms from the wealth of techniques available. This
spectrum ranges from classical correction methods to feature matching
to hybrid techniques.

o Evaluation of error removal capabilities of image-matching algorithms
under various geometric distortions and dependency of sensors to
different errors.

o Study of the effect of various resampling/interpolation algorithms on
registration accuracy.

° Detailed study of map-matching methods specific to SAR imagerv.
° Preliminary study of change detection techniques.

° Preliminary study and analysis in the areas of signal processing and
artificial intelligence to identifyv novel techniques for the removal
of speckle and handling of variations in contrast. The existence of
these factors lead to grossly incorrect matches. (Speckle is a
granular noise arising from the random interference of wavefronts
scattered from an optically rough surface.)

° ITdentification of several future approaches and techniques which
include SAR image matching to other SAR images, to visible
references, or to forward looking infrared (FLIR) reference images.
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c. OVERVIEW

A typical data gathering system geometry for remote sensing applications
is depicted in Figure 1. A reference map is provided by platform A with an
onboard sensor. Prior to the remote sensing operation, this reference map
covers a much larger area than the target or the scene of interest, and is
constructed and preprocessed accurately and is stored in the computer on the
ground. A sensed image is generated by a second sensor on board platform B.
This sensed image contains the target or the scene of interest only and is
contained somewhere within the boundaries of the reference map. The problem
is to rectify and correct the sensed image in such a way that accurate regis-

tration of all points within the sensed image (with respect to the reference

map) is possible. Rectification/registration can be accomplished on a com-

puter located in a mobile station on the ground.

This report covers the area of image rectification, registration, and
change detection for images generated by onboard sensors. Types of sensors
under consideration in the first phase of the study were very general and
generic in nature, covering the whole spectrum from optical to IR to microwave
(sections 1 through V). In the second phase of the study, specific problems
of SAR registration and rectification were surveyed and studied (section VI),

and new future tasks were proposed (section VII).

The conclusion of the study is covered in the first section of the

report, along with the introduction, objectives, and overview.

Section I[I describes the process of rectification as a whole. The
sources of jimage distortion are examined and various hases of reference data

are considered.

Section I11 describes geometrical distortion in imaging systems due to
optical and orientation effects. A design concept for near-real-time correc-
tion is also presented. Correction for display and matching is considered,
system hardware requirements are described, and superposition of multiple

images i{s discussed.




e,

S
D LR

2 s
[ P )

rry
.

l"
AN I ]

-'-
A
64,

A
.

PLATFORM A

PLATFORM B

2

ARt g4

f et
s

REFERENCE MAP

AN

GROUND
STATION

| SENSED
\ IMAGE
\

Figure 1. Typical Data Acquisition System

10

T e e e T T e T e e e T e e e e N e T T L N T AT e e e
R T S R A L R L et et e TN T T T e et et T et et e - N
. - R P vt TP SN .

- - “® e« a"a"

ot . .
- . S e, h - “. .t - - - - - 0 ~ - - . » - - - . ~. - ‘.- - g "‘.‘. -t
L T TR TS A U i Y - A LA A W N VUMW W IR TR LTATArLyarL e

“ e e ERE TR T
». LIPSO S WP TP T P )

PV P ._:'J




In general, three basic types of rectification algorithms have emerged
from this study and are categorized into: signal processing-based, artificial
intelligence—-based, and hybrid techniques which make the best use of the first
two approaches. Section IV describes all three categories of image matching

as well as change detection algorithms for multisensor environments.

In real~time systems using high data rates, rectification of every

picture element is not practical. In these systems, only a fraction of
samples are fully corrected geometrically, and remaining samples are obtained
using interpolation, resampling, or statistical approximation means. In
section V an overview of the resampling process as it relates to registration
and rectification of onboard sensor imagery is discussed. Various one- and

two—dimensional resampling techniques are reviewed and compared.

Very little work is available on the matching of SAR images to visible
images or to a SAR reference map. Most of the previous work has been concen-—
trated in the rectification and registration of visible imagery as discussed
in sections II through V. Section VI of this report deals with specific
qualities of SAR imagery which may cause serious problems in accurate image
matching and investigates the feasibilities of various rectification, regis-

tration, and change detection algorithms applicable to SAR imagery.

Part of the objective of the second phase of this study is to propose and
develop techniques for registration and change detection with SAR images.
These techniques may include SAR image matching to other SAR reference images,
to visible references, or to FLIR reference images. Because the problem is
generally quite difficulet and little work has been previously done on the

problem, several possible approaches are proposed in section VII.

Based on analysis in the areas of signal processing and artificial
intelligence, four specific tasks are proposed for image registration/rectifi-
cation and possible change detection of SAR data:

° The first task involves registration through geometrical transforma-
tion and resampling.

° The second task, which requires considerable research effort,
involves total registration and change detection through a com-
bination of signal processing and artificial intelligence techniques.

11
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© The third task is basically a simplified version of the second task
for registration of SAR images with a known, well-defined visible
image.

° The last task involves man-machine interactive methods for image
rectification. This approach to rectification allows for analytical
evaluation and comparison of various registration algorithms and
their performance in addition to the utilization of a photointer-
preter's inputs to the system.

D. CONCLUSIONS AND RESULTS

This study has surveyed the euntire field of image matching, rectifi-
cation, and registration, including techniques that are applicable to a wide
range of sensor wavelengths, image noise levels, image detail, and image
distortion. An important conclusion is that there is no universally robust
technique or even a family of techniques that can solve all rectification/
registration problems. The optimum solution is highly dependent on the
particular parameters of the system, including: speed; the number of pixels
(resolution); the quality of the reference and sensed images; the size of the
processor, including computing, memory and input/output capabilities; the
amount of human interaction allowed; and the amount of a priori information

available.

The study has led to the emergence of three major types of registration
algorithms:
° Correlated or signal-processing-based techniques that numerically

compute a measure of similarity between images on a pixel-by-pixel
basis

] Artificial intelligence (Al) or feature-based techniques. These
methods compute similarity between features extracted from the
images. The features can include edges, boundaries, and vertices,
and matching is often done at a higher (symbolic) level

o Hybrid techniques, which combine the first two techniques in a
hierarchy of levels to make the best use of both.

In general, the feature matching methods work best on images with high signal-

to-noise ratio (SNR) regardless of wavelength. Most SAR images never have SNR

adequate for a direct application of feature matching techniques. The

12




correlation~based techniques work best on images with low SNR, where they pro-
vide some inherent noise suppression. They will also fail, however, if there

are significant differences in orientation, magnification, illumination, etc.,
between reference and search images. Hybrid techniques are needed for low-to-

moderate SNR situations, regardless of the utilized wavelength.

Very little has been done on the specific problem of SAR rectification
and registration., It is generally a very difficult problem that requires a
great deal more research and development. The many unanswered questions about
SAR need more analysis, simulation, and experimental verification. There is
research at many levels (up to the doctoral dissertation level) under way at
many organizations to find out some of these answers, but they do not come
easily. Some of the specific questions and tasks discussed in this study
could easily consume several man-years of effort. Many of the most useful
practical results have involved extensive software development taking place

over a period of years.

On a more positive side, however, with specific well-defined information
about a particular scenario for matching, rectification, and registration, it
may be possible to find a reasonable practical solution that, although not

optimal, will give a reasonably good result.

13
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IT. RECTIFICATION/REGISTRATION OVERVIEW

An important image processing technique is the rectification of imagery
generated by various sensors. Rectification methods are usually categorized
under the more general term of "preprocessing” techniques. All preprocessing
techniques involve modifying an image to make it more like an "ideal” image,
which is the first step of visual data processing. Its ohjectives are: (a)
reconstruction of the ideal, high fidelity image from the low-quality, dis-
torted input image; and (b) improvement or enhancement of the quality of the
input image by suppressing noise and emphasizing selected features to facili-
tate later stages of image processing. Preprocessing involves three kinds of
modification: rectification, gray-level modification, and sharpening/
smoothing operations. Gray-level (or intensity) correction compensates for
the nonuniformity of sensor sensitivity and contrast. Sharpening and
smoothing are important for edge detection and other types of feature extrac-

tion.

In this section, the process of rectification as a whole is reviewed, the
sources of image distortion are examined, and formation of useful data bases

for specific map-matching problems is considered.

A. CATEGORIES OF ERRORS

Numerous error sources contribute in the existing distortions in an
unprocessed sensed image when compared to a preprocessed reference map of the
same region. These error sources are grouped into four convenient categories
according to Conrow and Ratkovic [l] as depicted in Table 1. These categories

are global, regional, local, and nonstructured errors.

Global errors affect intensity levels of all elements of the scene uni-
formly and can generally be removed by the rectification process. These

errors include geometrical and radiometrical (gain/bias) distortions.

The second category, called regional errors, uniformly affects the
intensity levels within homogeneous regions only and not the whole scene as

with global errors. An example of this category is "contrast reversals” which

15




TV TR

Pt dhon EAC e -

Y34y 1398Y1
40 SNDILYO
B3A0 ONOTD

S334N0S H0YY3
HIHI0 TV

Q34NLINYLSNON

JMNIIdS o
ISION
NLIAQY e

NOI93Y

TIVNS V NIHLIM
A1LNION3I4IANT 13XId
HIVI S13344V

SH0H43 V301

STVSHIAIY
LSVHINO] e

SNOI934
SNO3INIIOWOH NIHLIM
ATNHO4ING 13ATT
ALISNIINI S13344V

SH0HH3 TVYNOI93

~=— 5§3304d NOILVIIHILIId—=

NOILHOLSIO JIH1IN0I0VY e
SNOILHOLSIO TVIIH1INDIT e

ANHO4IND
SIN3IW3TI IN3IS TV 40
13A3T ALISNILNE S13344V

SH0443 1va019

durydiey s8vwW] uy s1011y jJo sata03938) [ IqEL

1WAOW3Y
4044

J1dINVX3

NOILINH30

16




S M A S YA ROS A Bes s s ot ohd o g g

affect the sensed image such that the relative order of intensities between
the two images to be compared is not preserved. This can occur in infrared
images acquired at different times of the day or in cases where a SAR image is
compared with a visible image of the same scene. A significant variation in
contrast may lead to grossly incorrect matches. There are some possibilities
of error removal in this case through edge-matching algorithms and cluster-

reward techniques that are described later.

Local errors are the third category of errors. Local errors affect each
pixel within a small region independently. Additive noise and speckle in SAR
imagery come under this category. The spatial size of the speckle is
generally on the order of the limiting resolution of the coherent SAR imaging
system, and this signal-dependent coherent—noise makes rectification and
restoration of SAR images more difficult. Some algorithms are available for
the partial removal of speckle availabhle, and these are discussed in

section VII,.

The last grouping of errors, called nonstructured errors, covers all
other error sources not already included in the global, regional, or local
categories. An example is a cloud over portions of the region of interest.
However, some rectification algorithms (correlation type or hybrid type) can
still perform even under the condition that part of the scesne in the sensed

image is missing (under the cloud).

B. TYPES OF DISTORTIONS REMOVED BY RECTIFICATION

A sequence of images of the same scene taken at different times by the
same sensor will contain relative distortions because of differences in the
viewing and scanning conditions at the sensor. These distortions are in addi-
tion to other variations and error sources as discussed in the previous
section. SGenerally, radiometric and geometric distortions (which are in the
category of global errors) can be accommodated by rectification and pre-
processing, whereas all other types of errors can he removed somewhat through
the right choice of algorithm {1]. This section discusses details of radio-

metric and geometric distortions.




l. RADIOMETRIC DISTORTIONS

These distortions are caused by atmospheric- and sensor-induced
filtering, sensor imperfections, camera or scanner shading effects (nonuniform
responses ), detector gain variations, and sensor detection gain errors.
Radiometric distortions appear in the form of blemishes, horizontal stripes,
shading, and nonuniform intensity distributions. Radiometric intensity
corrections for nonuniform sensor sensitivity can be implemented in real-time
using simple table lookup techniques [1-3]. Bias and gain error compensations
can also be implemented in the same manner. The effects of some of these dis-

tortions on the image are shown in Figure 2.

Radiometric distortions are generally predictable and can be corrected
relatively easily. Radiometric corrections are described in detail primarily
in the remote sensing literature [1,2]. The following sections of the report
deal mainly with geometric corrections of data, including the analysis of new
techniques available and their error removal capahilities. The radiometric

errors are considered predictable and correctable.
2. GEOMETRIC DISTORTIONS
The primary causes of geometric distortion are:
® Sensor related distortion
© Alignment variation
° Attitude variation of the spacecraft
Qo Ephemeris variation

Image distortion will result in a corresponding registration error if the
distortion is not estimated and removed. The effects of some of these distor-—

tions are shown in Figure 2.

a. Sensor Related. Variation in the motion of the sensor over succes
sive passes introduces distortions. For example, stretching or
compression of pixel spacing within a scan line results from varia-
tions in the velocity of the scanner. Another example of distortion
is the spacing hetween scan lines which can change from one image to
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the other as a result of variations in scan period. The angular
velocity of the scan also produces distortions in the form of
irregularly spaced pixels in the output image.

b. Alignment Variation. The variation in alignment of the sensor with
respect to the spacecraft coordinates axes results in both long term
drift and short term variations.

c. Attitude Variation. Variation in the spacecraft attitude (yaw, roll,
and pitch) with respect to a previous pass will cause registration
error.

d. Ephemeris Variation. This results from variations in the location of
the platform with respect to the ground with successive passes over a
given region. This error must be corrected for the rectification and
comparison of different images.

C. RECTIFICATION/REGISTRATION PROCESS

The general process of rectification for a multisensor environment is

shown in Figure 3.

The first step of the process is to match a sensed image to a reference
image. The reference image is typically larger than the sensed image, and the
sensed image may have magnification or rotation differences or may be geomet-
rically distorted compared to the reference. If a priori geometrical distor-
tion information is available (from calibration or inflight data, for
example), it can be used to greatly simplify the matching process. In effect,

\
any a priori knowledge reduces the number of degrees of freedom in the search.

Following corrections from a priori information, or directly starting
with the original sensed image, the matching process begins hy comparing por-
tions of the sensed image to the reference. Typlically, recognizable features
in the sensed image such as lines, vertices, edges, or shapes are compared to
the reference to find a set of "match point” pairs that can be identified in
both images. By matching only portions of the sensed image to the reference,
computations are reduced considerably, and the matching is made resistant to

minor differences in magnification, rotation, and distortion.

Image matching algorithms (correlation, symbolic matching, or hybrid) are
used to compute the location of an observed match-point (i.e., control point

or tie point) on the sensed image from the actual match points. The actual
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match points are physical features detectable in the reference map, whose

elevations and locations are known precisely.

As shown in Figure 3, after the "match-point™ pairs are found, a mapping
operation is performed. In this step, several match points, which are dis-—
tributed on an irregularly spaced mesh of points, are used to calculate a
mapping function, relating points on the sensed image to corresponding points
on the reference map. This is achieved through a set of distortion functions
that are generallyv piecewise or global polynomials, generally having terms up
to and including cubic powers of coordinate variables. More details on the

distortion functions are given in section IIT,

After match point pairs and distortion functions are found, the next step
is to perform a resampling operation on the sensed image pixels to register it
with the reference image. An interpolation in spatial coordinates is per-
formed on the irregular grid of sensed image match points to determine the
location of pixels that are geometrically transformed to a rectified
coordinate system. These pixel locations will generally never fall exactly on
a pixel location in the sensed image, so interpolation or resampling is per-
formed to obtain an output intensity value for the corrected pixel. Several

methods of interpolation with different amounts of smoothing are available.

Section V of this report is an-overview of the resampling process as it
relates to registration and rectification of sensed imagery. Various one- and
two-dimensional interpolation/resampling techniques are reviewed and compared

in detail.

D. DATA BASE FORMATION

Wide variations in temporal and spatial characteristics of a scene or
region of the terrain make it very difficult to develop a complete data base
toward a fully automated rectification system. Nevertheless, some useful data

bases for specific map-matching prohlems are available [1-7].

Figure 4 shows a possible reference data base (i.e., a reference map)
which includes operator annotations, vector/graphics, and grav-level image
data. Figure 5 shows a more general data base including types of target,

temporal signature variation, sensor wavelengths, and material interfaces.
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1 OPERATOR ANNOTATIONS VECTOR/RASTzR GRAPHICS
o VECTOR DATA e NATURAL FEATURES
e RASTER DATA e MAPS

e BOUNDARIES
e CONTOURS
e SYMBOLS
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MAP

GRAY-LEVEL IMAGE DATA
o SATELLITE DATA
o AIRCRAFT DATA

Figure 4. Reference Data Base
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TARGET TYPE SENSOR WAVELENGTH

STATISTICALLY
REPRESENTATIVE SET
OF REFERENCE MAPS

ONE DATA BASE PER
SENSOR WAVELENGTH

DATA
e BASE
TEMPORAL SIGNATURE VARIATION MATERIALS/INTERFACES

SET OF SENSOR
IMAGES COVERING THE
TOTAL RANGE OF
VARIATION

STATISTICALLY
REPRESENTATIVE SET
OF REFERENCE MAPS

Figure 5. Data Base Formation
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I[TI. REAL-TIME GEOMETRIC CORRECTION

In this section, geometrical distortion in imaging systems due to optical
and orientation effects is described, and design concepts for near-real~time
correction are presented. Correction for matching display and superposition
of multiple images are discussed. General computing and system hardware

requirements are also describhed.

A. GEOMETRICAL DISTORTTONS

In all imaging systems, a square coordinate grid placed in front of the
sensor does not appear square on display. The resulting effect is called geo-
metrical nonlinearity or geometrical coordinate distortion. A simulation of
the effect can be achieved by plotting a square grid on a flexible surface
(sav a rubber sheet) and then stretching it to destroy the rectilinear
pattern. Geometrical distortion usually affects only the position and not the
intensity of pixels, although in scanning systems the two effects are inter-
related because the density of scan lines in a given region influences the
apparent brightness. Regardless of whether a human observer or a measurement
system ultimately uses the image Information, some correction of these non-
linearities is generally necessary. If a number of different sensors view
the same general scene and are to be superimposed for viewing (as in multi-
spectral imaging) it is important that the effects of different relative
distortions in all systems he corrected. Typical sources of geometrical dis-
tortions in imaging svstems include: (a) nonlinearities in the sensor and
scanning electronics: (h) aberrations in the imaging optics, such as pin-
cushion and barrel distortion; and (¢) differences in the relative orientation

between multiple sensors.

The ohjective of this section is to develop procedures that correct
distorted images for display in real time. When the output of many sensors
are to be superimposcd, the correction must be independently accomplished for
all prior to display, and it is assumed that similar procedures will be
applied to each sensor. The distortion is modeled as memorvless mapping of

ohject scene points to display pixels, with no inherent smearing or averaging.
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The distortion is fixed in time, or at least slowly varying, so that

calibration of the correction system is not required during use.

Assume that the geometrically ideal image intensity is given by f(x,y),
where (x,y) are spatial variables in a rectilinear coordinate system defined
over the entire display field. The sensor measures this ideal image inten-
sity, where it becomes the distorted image intensity g(u,v) at position (u,v)
in the distorted coordinate system over the sensor field of view. The dis-

tortion relation between systems is given parametrically by

»
]

a(u,v) (la)

= 8(u,v) (1h)

<
|

Substitution of Eq. (1) in f(x,y) ard equating the intensity measurement gives

the relation

f(x,y) = fla(u,v), B{u,v)] = g(u,v) (2)

between f and g. The distortion given by Eg. (1) may be nonlinear functions

of (u,v) but must be one-to-one mafpings of points from one coordinate system
to another as depicted in Figure 6. If the distortion is a linear function of
the coordinates, then straight lines are transformed to straight lines and the
transformation reduces to a combination of magnification, rotation, and trans-

lation. With these given properties of Eq. (1), the system may be inverted

and solved to produce

u = 6(x,y) (3a)
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(x, y)

ORIGINAL SCENE SENSOR

Figure 6. Sensor Distortion

X, y)
(u, v)

SENSOR DISPLAY

Figure 7. ldeal Correction
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v = Y(x,y) (3b)

which is the ideal inverse distortion. The optimum distortion correction

system simply takes g(u,v) from the sensor and substitutes in Eq. (3) to give
g(u,v) = g[¢(X,y), ‘P(X’y)] = f(x,y) (4)

where f(x,y) is the corrected estimate. This operation is shown in Figure 7

and is the goal of all the correction systems proposed here.

The geometrical correction to recover f(x,y) from g(u,v) is accomplished
by first constructing the distortion model of Eq. (3) and then placing the
pixel value g(u,v) in the correct position (x%,y) to give the estimate of the

ideal image f(x,y). The second process is called "resampling.”

In a scanned display system, the spacing of the scan lines and scanning
speed influences the brightness observed by the viewer. In this case, Eq. (2)
describing the degradation must be modified from a simple point movement by
adding a multiplicative term. The requirement is that the power collected by
the imaging system which is radiated from a particular spatial region of the
object must be conserved at any time instant. Thus, the power radiated by a

small region dxdy around object point (x,y) is measured as
f(x,y) dxdy = g(u,v) dudv (5)

in the distorted coordinates. Using the distortion relations Eq. (1), the

elemental areas dudv and dxdy are related by

dxdy = J(u,v) dudv (6)
where
da da
Ju Tv
J(u,v) =
3 28 (7)
du v

28
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is a Jacobian determinant. Substituting into Eq. (7) gives

glu,v) = J(u,v) fla(u,v), B(u,v)] (8)

as the distorted image. This expression differs from Eq. (4) found previously
by the multiplicative factor J(u,v). The effect of J(u,v) is a multiplicative
gain which varies with position, and it may be included with other intensity

nonlinearities of the system.

Figure 8 is a block diagram of a distortion correction and resampling

system. In the next few sections we describe major subsystems.

B. CONSTRUCTION OF DISTORTION MODEL

To find the inverse distortion model of Eq. (3), pairs of control points

or landmarks in both the reference and sensor coodinate systems must be found.

Figure 9 shows labeled pairs of points (A-A”), (B-B”), etc., in the
sensor and corrected sensor coordinates. We assume that these match points
are available from correlation, sequential similarity detection, symbolic
matching, or hybrid algorithms that are described later in this report. From

these data, a model of the distortion can be obhtained.

An analytical model of the distortion correction can be obtained from

mapping polynomials in (x,y) of degree N having the form

N N=P o q
u = ¢(x,y) = X ) a q X'y (9a)
N N-P
v o= Wx,y) = ) y pq xPy (9b)
p=0 g=0
where a and b are the constant polynomial coefficients [4], (6], [7].

pq pq
Special cases of Eq. (9) include the linear or affine model

u = apx +agy +any (10a)
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Figure 9. Labeled Pairs of Match Points
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v = blOX + bOly + bOO (l”b)

and the bilinear distortion model

=1
]

31Xy +ajpx *agy + ag (1la)

<
]

bllxy + blox + bOly + bOO (llb)

Many local distortions in an image are accurately modeled by linear or
bilinear equations. For many practical cases involving the human observer in
real time or when the distortion is not severe, a second degree (N=2) approxi-
mation is probably sufficient. Lillestrand [7] describes the error as a
function of increasing polynomial terms and shows that little is gained by N
greater than 2 or 3. However, for large areas and more severe distortions,
higher order polynomials are necessary. Alternatively, a large image may be
divided into a number of smaller patches to which a linear or bilinear
equation is applied. Figure 10 shows how individual pixel locations are found
by bilinear interpolation on a mesh of points obtained from mapping

polynomials.

Finding the coefficients in Eq. (9) involves fitting two dimensional
functions to a set of measured values. Various estimation techniques can be
used [8], [9], most of which provide a minimum mean-squared - rror (MMSE) fit.

Two approaches to the fitting are described here.

Direct modeling is the first technique. It requires prior knowledge
about the position of control points in the sensed and reference images. An
alternative is indirec. modeling, in which a structural model of distortion is
derived from knowledge of the imaging process. For example, it is possible to
infer a distortion model from knowledge of the angle of elevation and other
parameters. The parameters in the model may be determined by logging data
from the imaging device, for example, the camera parameters (focal length) and
the vehicle parameters (x,y, and z coordinates in three-dimensional space, and
roll, pitch, and yaw). This approach is common in interpreting aerial

photographs.
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MMSE fitting expresses the ¢(x,y) and ¢(x,y) surfaces by polynomials
whose squared distance from the true surface is a minimum. To obtain the
coefficients, control point pairs are identified in sensed and reference
images. R control point pairs are selected, and their values of u = ¢(x,y)
and v = YP(x,y) are recorded. For a second degree (N=2) approximation to this
distortion, there are six coefficients to determine, and the measured data for

(u,v) are arranged in the form

r 1 . - 2 2 ]
u 1 x y X y Xy apo
U2 . alo
3
u . 801
R . = R . 320 6 (12)
- . 802

R

u . a
1L Jlen]
Equation (12) can be expressed as the vector equation

u = Da (13)
where u is an R-vector of measured output points (R » 6), D is the matrix of
input calibration points, and a is the coefficient vector. Using MMSE estima-

tion theory, the best estimate for a is
a = (™)l pTu (14)

where T and -1 denote transpose and inverse, respectively. The data for v are
taken at the same time and used to find E.for the polynomial of Eq. (9). If
greater accuracy is required for measurement purposes and N = 2 is unsatisfac-

tory, more terms in the expansion can be used and the size of D enlarged. For
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multiple sensors which are superimposed, the entire procedure is repeated for
each. It is also possible to improve the approximation over the polynomials

of Eq. (9) with the same number of terms in many physical systems [9Y].

C. DISTORTION CORRECTION SUBSYSTEMS

The subsystems labeled 4 and 5 in Figure 8 perform the actual correction
based on the pixel correction functions derived in the previous section. The
system consists of sensed data buffers analyzed in a speed hierarchy as shown.
The low-speed data buffer may be a disc, tape, or mass storage system that
transfers data to a higher speed but lower capacity system. The high-speed

data buffer is generally random access memory (RAM) in a computer.

The pixel movement/interpolation system performs a correction by stepping
through the discrete output (x,y) locations and finding the corresponding dis-
torted locations (u,v). The polynomial mappings can either be precomputed and
stored in a separate lookup table, or they can be computed on the fly from the

polynomials.

When the distorted location (u,v) is found, the intensity value and local
neighbors stored there are used to compute a geometrically corrected value
that is transferred to the output buffer. The general process is called
resampling and is discussed in detail in Section V. The simplest form of
resampling is to do no interpolation - the nearest neighbor pixel value to the
location specified by the polynomials is simply moved to the output buffer.

Other methods of interpolation are given in Section V.

In general, the sensed data buffers need to store only as many pixels as
needed to fill one line of the corrected data buffer. Other ilmportant con-
siderations in hardware implementation of the distortidn are the number of
image pixels, speed of implementation, and the maximum amount of gross
rotation distortion between sensed and reference images. In general, the
sensed image buffer should be as large as possible to reduce accesses to
slower-speed mass storage devices such as discs. Large sensed images mav not
entirely fit in a high speed buffer, so that many disc accesses mav be needed
for large distortions. A 90-deg rotation of sensed image is the worst

possible case because it effectively requires a transpose of a large array, or
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equivalently, each corrected pixel comes from a dittereat line of the scnsed
image. For small distcertions, the high speed buffer can be much smaller
because fewer lines of the sensed lmage are neceded to generate one corrected
line. Sophisticated data base organization, parallel processors, and parallel
disc access hardware may be effectively used in speeding up the correction

process.
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IV. RECTIFICATION AND CHANGE DETECTION ALGORITHMS

Three major categories of rectification algorithms have emerged from the

study.
® Signal-processing-based (SP)
© Artificial-intelligence-based (AI)
® Hybrid techniques

The signal-processing—based algorithms use various correlation methods to
find the best match between reference map and sensed image. The Al-based
algorithms compare symbolic representations of features extracted from both
images. Hybrid techniques combine approaches in an effort to make the best

use of both.

In this section, various image matching algorithms for multisensor
environments are studled and analyzed in detail. Change detection algorithms

are also reviewed.

A, TYPES OF ALGORITHMS

Two basic types of matching procedures exist: signal processing or
correlation-based techniques; and artificial intelligence or symbolic-based
techniques. More recently, hybrid techniques have been developed that attempt
to make the best use of both procedures (see Figure ll1). The signal process-
ing techniques work by correlating intensity values of original or enhanced
portions of the sensed images against the reference. The best match based on
a match quality measure is then recorded. There are a number of ways to
perform the correlation, and a fast algorithm known as sequential similarity
detection (SSDA) offers a speed improvement by a factor of 100 over conven-
tional correlation. The artificial intelligence tech: iques compare symbolic
representations of features extracted from both reference and sensed images.
These features can he edges, lines, vertices of line intersections, shapes,
etc. Given a distance function or other >»lative match quality measure, graph

matching or searching techniques such . relaxation labeling are used to
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compare reference and sensed symbolic data sets. The symbolic data have a
much lower dimensionality than pixel-based signal processing data, thus com-
putations should be reduced for symbolic matching. One additional tradeoff
between the techniques concerns noise resistance. Correlation techniques
provide inherent noise suppression and can find good matches with significant
amounts of image noise if the relative magnification, rotation, and distortion
differences are not great. Symbolic matching strongly relies on good, noise-
free feature extraction. With noisy edges, lines, vertices, etc., symbolic

techniques will fail, thus good preprocessing for noise suppression and

robust, noise-resistant feature extract is essential for symbholic matching.

Hybrid techniques combine both approaches to make the best use of both.

{ Tables 2 and 3 summarize this result for various types of sensors under study
k. and for the different error categories discussed in section IIL,

B. S IGNAL~-PROCESSING-BASED ALGORITHMS

The standard signal processing technique for registering Images is to
form a correlation measure between them as a function of translational shifts

and find the location that gives the maximum correlation value. Several

references discuss this problem [10,12], and the book by Pratt [13] summarizes

the results,

The simplest form of a two-dimensional correlation measure Is given by

J J
Lo LR Gy Gy )
- J= =
R(m,n) = 172 7y (19
oK, J K,
}. Z Fl (1yk) Z Z Fz (j‘m, k—n)
ji=l k=1 j=1 k=1

where F; (j,k) and Fp (j,k) are two discrete images to be registered, and
(j,k) are indices in a J x K pixel window area W that is located within an
M » N point search area S. Figure 12 shows the search and window areas. In

general, the correlation function is computed for all (M-J+l1) (N-K+1) possible
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Table 2. Sensor-Dependent Rectification Methods

SENSOR TYPE LOW SNR MODERATE SNR HIGH SNR

OPTICAL/NEAR 1R P,A- CORRELATION HYBRID FEATURE MATCHING

P HYBRID HYBRID FEATURE MATCHING
MIDDLE IR

A CORRELATION HYBRID FEATURE MATCHING

P HYBRID HYBRID FEATURE MATCHING
THERMAL IR

A CORRELATION HYBRID FEATURE MATCHING
MICROWAVE P CORRELATION HYBRID FEATURE MATCHING
AR 1-D CORRELATION HYBRID {not adequate SNRI

2-D HYBRID
P = PASSIVE SENSORS

ACTIVE SENSORS

P
il
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Table 3. Algorithm Error Analysis

ERROR CATEGORY

GLOBAL REGIONAL

ALGORITHM {Geometric, (Contrast LOC.AL NONSTRUCTURED
. ) (Noise) (Others)
radiometric) reversal)
CORRELATION MEDIUM POOR GOOD GO0D
FEATURE MATCHING MEDIUM GOOD POOR POOR
HYBRID GOOD GO0D MEDIUM GOOD
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Figure 12. Correlation Search and Window Areas
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translations of the window area within the search area to find its maximum

value and the displacement that gives the best match.

One possible problem with the correlation technique is that the correla-
tion function may be very broad, making detection of the peak difficult. This
will particularly happen If the search and window images contain large uniform
regions with very few details. Another problem is that differences in scale
size, geometric distortion, rotation, and relative intensity between the two
images will make registration difficult and effectively suppress the correla-
tion peak. Pratt [13] has described some techniques for avoiding the first
problem. They consist of prefiltering the window and search areas with a

Laplacian spatial high-pass filter that effectively performs edge enhancement.

Another difficulty with the correlation method of image registration is
the large amount of computation needed. In Eq. (15) the correlation measure
Rg (m,n) must be computed for all (m,n) before the maximum can be selected,

and the amount of computing is the same for all degrees of misregistration.

To overcome some of these problems, a class of algorithms known as
sequential similarity detectlion (SSD) has been developed by Barnea and
Silverman {14]. These algorithms provide a test for misregistration with

fewer computations.

The basic form of the algorithm is to compute an error measure

€ (myn) = ) ) IFI (i,k) = Fy (j-m, k=n)| (16)
ik

where the sums are taken over the window area and F| and F, are the window and
search functions, respectively, as before. However, the sum is not taken over
a regular scan indexiqgz of (j,k). TInstead, the absolate value of the differ-
ence in Eq. (16) is accumulated for randomly selected points In the window
area. If the accumulated error exceeds a fixed threshold before all J x K

points in the window area are examined, then {t is assumed that a particular
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shift (m,n) is a poor candidate for matching, and another shift of the window
is checked. If the error grows slowly, then the number of polats examined
when the threshold is finally exceeded is recorded and used as a rating of a
particular shift (m,n). When all possible shifts have been examined, the
window with the largest rating is chosen as best. The highest possible rating
is equal to the number of window points J x K, In this way, shifts that are

grossly incorrect are discarded rapidly after only a few computations.

The SSD algorithm can also be combined in a hybrid approach as a pre-
processor for correlation registration. The SSD algorithm can be used to
discard gross misregistration, while a correlation algorithm can be used for
the final refinement. A reduction in computations by a factor of 100 over

correlation has been experimentally observed using SSD techniques.

c. ARTIFICIAL-INTFLLIGENCE-BASED ALGORITHMS

As outlined earlier, feature matching algorithms do not directly use
intensity data. Instead, they use scene features such as edges, boundaries,
and line vertices. The first stage of processing generally extracts these
features. Then distance functions between sensed and reference image features
are defined and a search for the best match is made. The search techniques
can include graph matching, and nonlinear or linear optimization. Some

examples of scene matching techniques are discussed in detail here.

There are two major types of artificial intelligence (AI)-based
algorithms for image matching that require little or no a priori control point
information. These techniques are: «clustering features and feature groups:

and structural/symbolic matching.

The clustering approach begins with features extracted from both
reference and sensed images. These features can be intensity itself, edges,
texture, etc. No labeled control points are present in the two images. The
general algorithm provides a reward for region correspondence based on the
clustering of the joint histogram of features in the two Iimages. The
algorithm tries to measure the correspondence of features of each type Iin the

two images and finds the rotation, translation, and scaling needed to create a
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correspondence. It increments the cluster model by one unit at each such
angle, x-y coordinate, or scaling parameter, and groups values corresponding
to the identification of two features with one another. This approach can
immediately follow front-end feature extraction., Basic references are
[15~17). Reference [18] discusses sequential feature detection, which may be

useful in speeding up these routines.

Structural and symbolic matching is to date a research-level algorithm
process involving automatic interpretation, but it is principally applied to
partially specified scenes [19] and structure interpretation from image
boundaries {20]J. A data structure system has been created as part of the
ACRONYM [21]) model-based vision system involving five levels of graphs:

“context,” "object," "observability,"” “interpretation,” and "picture” [19].

Also, much work has been done using linear features [22],

Additional detailed work on scene matching, performed by Hughes Research
Laboratories [23,24], has developed scene matching systems that extract line
and vertex features derived from the scene. Feature welghting, based on
matchpoint location and model feature content, is used to define geomeirical
transformations between reference and sensed models that lead to highly accu-
rate matchpoint location. An important part of this work is the use of data
structures for regions, lines, vertices, and connected groups that contain
parameters and links to other data elements. The technique is experimentally
highly tolerant to differences In scene contrast, scale, and orientation
differences. More details of these algorithms in their specific application

to SAR image matching are given In section VI.

D. CHANGE DETECTION ALGORITHMS

Once the sensed ani reference images are rectified and spatially
registered, both signal processing and symbolic approaches are available for
change detection, in a manner similar to that used to obtain pairs of match
polnts (see Figure 13). Any change detection method must contend with differ-
ences In illumination, sensor, wavelength, and surface conditions [6,7]. Some

of these effects can be compensated for by a priori knowledge. Signal
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processing approaches for registered visible and IR images include pixel
differencing, although speckle and other texture artifacts in SAR images may
cause problems. Symbolic techniques for change detection involve segmenting
the images into regions or shapes with similar feature properties, and
extracting symbolic descriptions of these regions. The symbolic descriptions
may be edges, lines, shapes, or other higher~level visual features. These
symbolic descriptions are compared by graph matching, searching, etc., similar
to the general techniques described for finding match points. This type of
change detection allows additional knowledge, such as contextual relationships
and semantics, to be included in the change detection process. Also, hybrid
approaches that combine signal processing and symbolic processing have bheen

studied. More investigation into techniques of change detection is needed
[15,16].
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V. RESAMPLING PROCESS

In the process of registration and rectification of remotely sensed data,
a problem arises as a result of nonuniform spacing of the input pixel values
in both along-scan and across—scan directions. This distortion of a regular
grid and pixel polnts Is a result of implementation of geometric and
radiometric corrections on the image data. It then becomes necessary to
evaluate new data values of the sample in order to achieve a regular rectan-
gular grid of output pixels with the desired number of lines and sample/lines

for the purpose of registration. This process is called "resampling.”

In this section, an overview of the resampling process as it relates
to registration and rectlification of onboard sensor imagery is discussed.
Various one— and two—-dimensional resampling techniques are reviewed and

compared.
A. BACKGROUND

Resampling involves constructing an ideal image by determining for each
pixel (x,y) the corresponding pixel in the distorted image. The intensity
value of the pixel in the distorted image is then copled into its undistorted
position in the ideal image. Unfortunately, a pixel position (i,j) in an
ideal image will usually not map to an integer coordinate (m,n) - the exact
pixel position whose value is sampled in the distorted image — but to a point
(1, v) between pixel locatlons (see Figure 14). How, then, is the value at
(u,v) - the value to be copies into pixel (i,j) — to be determined? There are
two common solutions to this problem. One is to copy the value of the nearest
neighbor to (u,v) into the ideal image. The other is to interpolate a value

based on the values of pixels in a window around (u,v).

During the past decade, a great deal of research was carried out regard-
ing the application of digital interpolation techniques to remotely sensed

digital images [25-28].

Perfect image reconstruction is possible with a number of interpolating

kernels (reconstructlon filters) for band-limited image samples with a proper
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sampling period. For example, a sinc function can be used as an interpolating
kernel for exact reconstruction of an infinite number of sufficiently close
samples of a band-limited image [35]. 1In practice, however, because of
limitation in computation time and storage, it is often difficult or imprac-
tical to produce exact reconstruction of an imaging system and, instead,

simple approximating techniques are used.

B. RESAMPLING TECHNIQUES

Three approximating techniques are commonly used in resampling of one- or
two-dimensional data: nearest-neighbor, bilinear interpolation, and cubic

convolution (spline interpolation).

Figure 15 shows how pixel values are determined for a location (X) in
between pixels for the above three techniques. 1In this figure, pixels are
presented by dots, and lines connecting pixels show the pixels used in inter-
polation to determine an image data value at the location presented by deltas.
Lines connecting the deltas show another interpolation process required to

find the data value at location X.

For nearest nelghbor resampling, the data value of the pixel closest to
the resampled pixel (location X) is chosen for the result of the interpolation
operation. The interpolation kernel is linear and is shown in Figure 16,

This kernel produces position (horizontal and vertical) errors throughout the
operation, as much as #0.5 pixel spacing, which results In rapidly changing

contours (jitters) In the region of high contrast [25,26].

The bilinear interpolation kernel shown in Figure 16 requires a bilinear
combination of four pixel values closest to the desired location X
[Figure 15(b)]. The smoothing effects of bilinear interpolation cause some
image degradation in the form of edge smoothing and loss of maxima/minima

structure [26-28].

The cubic convolution process, which is an approximation of the sinc
function by cubic polynomials with a kernel shown in Figure 16, requires the

values in a grid of 4 x 4 pixels about the desired resample pixel location X
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[Figure 15(c)]. This approach [27] in the earlier reports was shown to give

better results, even in comparison with sinx/x truncated at 10 pixels.

C. INTERPOLATION PROCESS

Once the match points for the distortion are computed, it is necessary to

resample the Irregularly spaced data at coordinates (u,v) so as to produce
r output image data at coordinates (x,y) defined on a regular grid of pixels.

F- The resampled image data are, In general, computed by an Interpolation proce-

dure.

g(x,y) = ) £ (u,v) K(x-u, y-u)

u,v
where
K = interpolation kernel
f = available raw data values
g = resampled data values

Note that for Integer values of x,y the corresponding image coordinates u = x
+ 8x and v = y + 8y are noninteger values, where 8x, 8y are image distortion

approximations.

Although several two-dimensional interpolation kernels for regularly
and irregularly spaced data are available [12, 32,33], in practice, the two-

dimensional kernel K is considered as a separable kernel

K(x-u, y-u) = k(x—-u) h(y-u)

and the resampling process is implemented as two one-dimensional interpola-
tions: first in the direction of raw data scan lines, and then in the

orthogonal direction.

Note that the ideal interpolation kernel for band-limiting data is of the

form
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sin 7 (x—u) sin 7 (y-u)

K(x-u, y-u) = C 3
T (x=u) (y-u)

However, this function has significant magnitude until very high lx,u] and
|y—v| and, thus, the summation terms for each interpolation tend to be very

large.

In one dimension, the simplest Iinterpolating kernel is the pulse func-
tion, which results in nearest neighbor resampling. A triangle function
provides a bilinear interpolating kernel (Figure 16). The cubic convolution
kernel is described in the next section; its smooth curve actually coincides

with the original data values.

D. CUBIC CONVOLUTION INTERPOLATION

Cubic convolution interpolation is an approximation to the resampling
process by fitting a plecewise polynomial to the sinc function through inter-
polation while imposing certain constraints [26]. The contribution of a
spline kernel to the approximation method is twofold: (a) reduction of the
summation term in the ideal interpolation from an infinite number to a summa-
tion over four input sample pixels; and (b) optimization in terms of zero mean

error and minimum error variance.

Simon [28] was the first to introduce the cubic convolution interpolation
using splines and formulating the resampling problem as a constrained linear
¢«stimation problem with suitable image models and optimization criteria. In
this paper the Interpolation kernel is called “"cubic convolution,” but the
plecewise cubic polynomials used for the approximation are not simple splines
by nature, since they do not follow the continuity criteria that are specific

to spline functions.

A spline function of order k is defined to be a piecewise polynomial
function of order k on some interval with k-2 continuous derivatives [29,30].
In other words, a spline function is a plecewise polynomial function that is

as smooth as it could be without simply reducing it to a polynomial.
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The one-dimensional cublc convolution kernel given by Simon is one of the

form

k(0) =1

k(#£l) = 0

k(x) =0, [x| > 2
k(x) = k(-x)

with the constraint equation

k(x) + k(1L + x) + k(1 - x) +k(2 -x%x) =1

and the further constraint of continuity of the first derivative of all knot
points. The above defines a cubic polynomial with one degree of freedom,
which can be taken, for example, such that the derivative of k(x) at x = 1 be
the same as that of sinc (mx). This gives the following polynomial as an

approximation to a sinc function at four points:

L-2 x|% o+ )x)3 10 < [x| <1
k(x) =4 -8 |x] +5 |x|% - [x]° 1f1<x<2
0 otherwise

which is a continuous function with a continuous first derivative at equally
spaced knot points, -1, 0, 1, 2, but a discontinuous second derivative at #l.
This discontinuity indicates that the above function is not a regular spline
function with all its continuity properties, but is a sort of smoothness

deficient spline [29-31].

E. DETAILS OF CALCULATION

In one-dimensional cubic convolution, four terms are included in the

summation, i.e., only four pixel values (uj.y, uj, uj4] and Ui+2) nearest to

the desired location (X) contribute, and the interpolation equation becomes
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g(x) = 121 f(ui) k.(x-ui)

It is reasonable to assume that each array of raw image data along-scan has

evenly distributed pixels with spacing uj4) - uj = h. Thus, the above

equation reduces to

]

g(x) f(ui—l) k(8x+h) + f(ui) k(6x)

+

f(ui+1) k (8x~h) +f(u1+2) k (8x-2h)

where x = u; - 8x and h = uj4)-u;-

A graphical presentation of the four k~values for the cubic convolution
kernel described in the previous section is given in Figure 17. The summation

in the above equation is also illustrated in Figure 18 where £1 = f(up)

k, = k(d&x+t), k

{ = k(8x), k

= k(6x-h) and k, = k(6x-2)

2 3 4

and the dot represents the interpolated value g(x).

In practice, several 8x values are given; the corresponding k-values are

precomputed and stored in a vector to be used during the resampling process.

In two-dimension, the same process can take place, except K is a matrix
of 4 x 4 and 16 pixel values are considered for interpolation. However, as
described previously, the resampling process usually takes place in two
stages: first in the direction of raw data scan (along—scan line), as out-
lined ahove; and then in the orthogonal direction (across-scan lines).
Across—-scan line interpolation proceeds In the same manner as along-scan line,
except interpolation is along columns of interpolated data (in the x-v coor-
dinate system). Final output is usually interpolated along— and across—scan
and is presented in the x-y coordinate system as a regular grid of pixels

{32-34].
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Figure 17. Interpolation Kernel k(x) of 4-Point Cubic Convolution
(as used in the resampling process)
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F. ANALYSIS OF RESAMPLING ALGORITHMS

As pointed out previously, the most commonly used resampling technique
(replication or nearest neighbor interpolation) reduces the resolution of the
image, igiving it a blocked look and changing diagonal edges Into staircase
responses. It produces errors of the order of 0.5 pixel spacing which, in
turn, results in some sort of jitter in the high contrast regions of the
imagery. The familiar bilinear interpolation technique has a smoothing effect
that is pleasing to the eye but causes degradation around edges and highlights
of imagery. Cubic convolution has less of a smoothing effect, but it is

harder to implement.

Some resampling results [27-35] suggest advantages of nearest neighbor
and bilinear interpolation over resampling by cubic convolution as a result of
overshooting of data and exaggeration of peaks (valleys) occurring in the

cubic convolution.

However, from the outcome of all analysis to date, it seems that the
cubic convolution method is the leading method as far as computing time,
statistical, and frequency-content considerations lie. On the other hand,
artifacts such as ringing or other unpleasant visual effects may still be
present in the final image after resampling with cubic convolution. Note that
many artifacts seen in the resampled data are independent of the specific
interpolation method and actually present in the original data as well. More
analysis of the effect of resampling algorithms on various artifacts such as

speckle, shadowing, and contrast reversals is under active study.
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VI. SAR IMAGE RECTIFICATION

At present, not enough results and studies are availahle on the matching
of SAR images to visible image or to a SAR reference map to draw conclusions
from. Most of the previous work has been concentrated in the rectification
and registration of visible imagery as discussed in previous sections. This
section deals with specific qualities of SAR imagery which may cause serious

problems in accurate image matching and investigates the feasibilities of

various rectification, registration, and change detection algorithms

applicable to SAR imagery.
A, BACKGROUND

The specific qualities of SAR data must be considered when a SAR image is
to be registered with a visible image or when two SAR images are to be regis-
tered. SAR imagery ls generally different statistically and visually from

imagery obtained by visible, IR, or other wavelength sensors. SAR imagery

tends to have much lower pixel-to-pixel correlation than visible imagery, and
may have much greater dynamic range. For visible imagery, a dynamic range of
8 bits (256 to 1) is usually adequate; while for SAR data, the dynamic range
may exceed 1000 to 1 [36-38]. Bright specular reflections (glints) from plane
surfaces such as roofs and strong returns from corners of man-made structures

contribute to thls great dynamic range.

The coherent nature of SAR creates artlifacts such as speckle and false
texture in optically diffuse areas of the scene. Speckle is a granular noise
arising from the random interference of wavefronts scattered from an optically
rough surface [41,42]). 1In its most general form, speckle is signal-dependent
and very objectionabhle visually. Speckle may create the appearance of texture
in regions that appear uniformly bright at a different wavelength. The spatial
scale size of the speckle is generally on the order of the limiting resolution

of the coherent SAR imaglng system [41-43],

Other artifacts include shadowing of surface relief features and contrast

reversals in comparison to visible imagery.
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Figure 19 is a simulation showing how the appearance of an aerial photo-
graph changes with visible and SAR sensors [41]. Figure 19(a) 1s an example
of an aerial photo at visible wavelengths. Figure 19(b) shows a digitally
simulated coherent image with speckle simulated using an exact signal-
dependent model. It has a signal-to-noise ratio of 2. The simulation does
not include some particular SAR artifacts such as shadowing, specular

reflections, and contrast inversions, but does include granular speckle noise.

Various techniques for the suppression of speckle have been investigated

[41, 42, 44]). One class of techniques, which increases the signal-to-noise
ratio by incoherently averaging independent looks, can be obtained by polari-
zation, wavelength, and spatial frequency diversity. Other techniques use
recursive and nonrecursive image restoration to spatially smooth speckle noise
while preserving object details. Figures 19(c) and 19(d) show examples of
recursive filtering applied to images with speckle. Figure 19(c) shows the
image of Figure 19(b) processed by a local linear minimum mean-square error
filter; Figure 19(d) shows Figure 19(b) processed by a maximum a posteriori
(MAP) filter.

Very little theoretical and/or experimental work on the matching of SAR
images 1s available [17,48,50-55]. Referring to Figures 3, 20, and 21,
describing image matching methods, it is likely that signal-processing-based
correlation techniques applied to SAR pixel data would be the most effective.
These techniques provide some noise immunity by their inherent spatial averag-
ing over the window area. It is probable that the usual correlation computa-
tion over windows would work well on SAR data, although it is unclear how
more-sophisticated, fast algorithms such as sequential similarity detection
(SSD), which do not use all data in the window, would work.

The artificial intelligence (AI)-based techniques shown in Figures 20 and
21 generally require clean, noise-free image data, and robust features such as
edges, boundaries, and vertices. The AI-based matching problem then reduces
to a symbolic matching of directed graphs or other relational structures using

relaxation or other techniques. Hybrid techniques are useful in that they may
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Figure 19. Visible and Synthetic SAR Images
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Figure 20. SAR Image Matching Techniques
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Figure 21. SAR Image Matching
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provide some spatial averaging, but good extraction of lines, edges, and other

linear features is still required.

Much research is still needed on the matching of SAR imagery. One
approach is to investigate various preprocessing algorithms for noise removal,
followed by matching techniques suitable for visible data (either signal
processing or AI). Another approach may be to segment a SAR scene into
regions of common texture and/or brightness, extract outlines of the segmented
regions, and combine this with other edge/line data derived from the scene as
input to a matching procedure. For Al-based symholic matching, more a priori
knowledge specific to SAR can be included. For example, in a visible image
Al-based matching system, knowledge that bodies of water generally appear
darker than large land masses can be used in matching. This fact may not be
true in SAR Imagery, and a knowledge base of relevant facts such as these can

be developed and incorporated into the matching.

A related problem concerns the matching of SAR images to visihle images.
In this case, significant contrast reversals between the scenes will occur,

thus hybrid or feature matching techniques may be the only ones that work
[48].

8. SAR IMAGE MATCHING ALGORITHMS

Very little work is available on the matching of SAR images to visible
reference maps or SAR images. As discussed earlier, most previous work has
been concerned with the matching of visible images to visibhle images. The
introduction of speckle scintillation by SAR systems, along with magnifica-
tion, rotation, geometrical distortion, and other sources of mismatch makes
the general SAR matching problem very difficult. This section reviews the few

techniques of matching that specifically consider SAR images.

Novak [57,58] has studied a generalized correlation approach to the
matching of map reference data to SAR data. He specifically considers the
effects of speckle and the reduction of processing complexity using fast
implementation techniques. Novak uses correlation with radar edge features

(for example, land/water contours, tree/field contours) that have sufficient

66

DR R ._'.'._‘-"’.“-."- L U N I R
S

Te - - - - . . .
DR CIAR R R R R el T T T SR S PR L SO IR I IR LI L
P PNV, PPN YO T Wi S A WL . 0.0 L YR PID AT T P WD T G U v o S O L PRI S S o PP P U W | PR S




NIRRT Ty ARG A S A S Mt J Sl S R Pl . o It i - SO Thnde i S Sy S 2 de St e bl

rw T
Y YO

radar contrast, unique shape, and length to provide reasonable robust perfor-
mance. The actual matching is done with bipolar (+1 or —1) edge or shape
templates such as shown in Figure 22, The unit weights of the template mean
that multiplies are not required, thus reducing the computational complexity.
The template is correlated with the input SAR image, and peaks that exceed a
threshold are recorded along with translational Information. For all correla-
tion peaks above a detection threshold, a shape or fill factor equal to the
number of pixels within the +1 template whose value lies above an average of
the template sum is computed. After a search over the whole image, the corre-

lation peak with the largest fill factor is chosen as the best match point.

Several generalizations of the basic correlation method are given by
Novak [57], each having different techniques of computing a correlation
measure. The effect of scintillation and/or speckle is minimized by the
averaging of many resolution cells on each side of the edge template as part
of the correlation. For one particular correlation measure (called "edge
ratio”), Novak derives statistical estimates of the probahility of feature
detection and false alarm based on edge contrast ratio, edge length, edge
shape, and template width. He also gives an experimental verification of per-
formance using real SAR data. In another paper [20] Novak extends the pro-
cedure to allow for adaptive detection thresholds (in effect assuming a
spatially nonstationary image model) and considers effects of clutter from

other targets, decoys, or specular reflections.

Hiller [55] has described a shape matching approach for SAR image
matching. Like the techniques described by Novak, Hiller's method has little
dependence on ahsolute intensity and contrast of the scene. He uses reference
binary templates like that Iin Figure 22 that are correlated with the input
scenes and exploits the binary characteristics in various ways to achieve
computational savings. The inherent averaging provides resistance to scene
scintillation and speckle. The correlation results are compared to an adap-
tive threshold computed locally over the scene. The adaptive threshold is
effectively self-normalizing and reduces the effects of intensity and contrast
variations. Hiller derives theoretical results on the expected correlation

value and probability of feature detection as a function of shape parameters.
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Figure 22. Bipolar Edge Template for Image Matching
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His theory provides a good match with experimental results obtained by corre-

lation over a large ensemble of SAR images.

Kiremidjian has described in several papers [4-6] image~to-map registra-
tion algorithms that specifically consider problems of SAR, He is concerned
with the registration of 2-D reconnaissance SAR images to a 3-D reference.

His presentation is general and is followed later by a discussion of the
problems of tactical strip map SAR image matching. Kiremidjian's techniques
involve the computation of correspondences between a 2-D SAR image model and a
3-D map data base in terms of a parameter set such as altitude, range, and
scale. If the exact values of the parameter set were known, the model then
predicts the 2-D SAR image coordinates for any 3-D data base point, and
registration is achieved. However, ephemeris data from the sensor platform
generally gives estimates of the model parameters. The goals of Kiremidjian's
techniques are to refine these estimates so that the location of any data base
point can be found in the sensed image within some desired accuracy.
Kiremidjian then discusses real-time or near real-time methods for achieving

these objectives in a tactical setting.

Two major techniques are given by Kiremidjian. The first [59] requires
human operator Ilnvolvement to pinpoint control point locations in the sensed
images. The model predictions of these same control points in the map data
base are then compared to the control points obtained by human involvement,
and the model parameters are searched for sets of values that minimize the

distances between pairs of points,

The second technique [54,59,60] is more automated and relies on the fact
that landmarks such as land-water houndaries, roads, and fences produce edges
in SAR data. In this procedure, the locations of landmarks in the data base
are matched to edges extracted from the SAR image. A search over the model

parameters gives the hest match.

For both techniques, Kiremidjian gives details of the geometric model for
image~to-map registration and describes several algorithms and techniques for

parameter refinement and searching. He includes experimental results for both
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techniques that prove the differences of the methods. His later papers
[54,60] include details of edge extractlion, nolse suppression and thinning on
the SAR image data, and contain a detailed discussion of applications to
strip-map SAR imagery with resolution of 512 x 4096 pixels. He demonstrates a
location accuracy of 50 m for this type of system., Kiremidjian's work is one

of the most complete and relevant references available.

Another study made using assumptions similar to Kiremidjian has been
reported by Naraghi and Stromberg [48]. They are also concerned with the
matching of SAR imagery to a digital 3-D topographic data base, and matching
to previously acquired SAR images. One of their techniques assumes that a
known set of matchpoints is extracted by human interaction, and these tie-
points alone are used to determine the SAR image distortion. They include a
discussion of geometric correction (rubber sheeting) by polynomial matching
functions and a mathematical analysis of the geometry connecting 2-D images
and 3-D topographic data bases. Another technique given by Naraghi and
Stromberg is similar to Kiremidjian's in that platform ephemeris data are
combined with tiepoint information for registration. The context of Naraghi
and Stromberg's discussion is somewhat different because they concentrate on

Seasat SAR data analysis.
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VII. PROPOSED NEW TASKS FOR SAR IMAGERY

The first phase of the study objective was to lnvestigate and analyze the
general process of rectification. However, in the second phase, the emphasis
was placed mostly on the SAR image matching. Part of the objective of the
second phase was to propose and develop techniques for registration and change
detection with SAR images. These techniques may include SAR image matching to
other SAR reference images, to visible references, or to FLIR reference
images. Because the problem Is generally quite difficult and little work has
been previously done on the problem, several approaches are given in the
following sections. The results generally apply to both registration (finding
of match points for spatial warping) and to change detection once images have
been registered. These problems are highly interrelated and differ mainly in

the window size over which the matching must be performed.

Based on the analysis In the areas of signal processing and artificial
intelligence, four specific tasks are proposed for image registration/recti-
fication and possible change detection of SAR data. The first task involves
registration through geometrical transformation and resampling. The second
task, which requires considerable research effort, involves total registration
and change detection through a combination of signal processing and artificial
intelligence techniques. The third task is basically a simplified version of
the second task for registration of SAR images with a known, well-defined

visible image.

The last task involves man-machine interactive methods for image rectifi-
cation. System hardware/software requirements and configurations are also
discussed for this task. This approach to rectification allows for analytical
evaluation and comparison of various registration algorithms and their perfor-
mance in addition to the utilization of a photointerpreter's inputs to the

system.
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TASK 1 — REGISTRATION THROUGH TRANSFORMATION
AND RESAMPLING

The task objective 1s to develop techniques for registration of SAR
imagery in cases where a reference image may not be available (Figure 23),
Input may consist of the digital sensed image, some geometric preflight
parameters, and calibration data (i.e., geometric control information).
Control information may include scanner location and pointing, ground truth,

and map transformation.

The method of approach proposed here for digital registration/rectifica-
tion, consists of two major steps. First, a rectified model is computed from
the control information utilizing transformation techniques. Second, the
image is warped according to the rectified model through application of
resampling and interpolation techniques. For large images, highly specialized
computational methods for efficient warping and complicated data processing
for error optimization is required. Smaller images or subimages can be
handled in a much simpler way. With more preflight and inflight information,
higher degree geometrical warping polynomials can be used, and as a result,

more accurate registration is expected.

Mathematically, geometrical distortions are mappings from plane to plane
that specify where a point in one domain appears in another domain. Section
ITI of this report gives details about the properties of distortion functions
and techniques for obtaining them in various applications. Some of the tech-
niques described are: polynomial fit, nearest-neighbor interpolation, finite
element method, and the method of potential functions. These are used in
cases where there Is no need or desire to use a priori knowledge of the nature
of the geometric distortion., If one knows (from physical considerations) the
general functional form of a distortion, then there are methods (least
squares, Kalman filtering, etc.) of fitting the functional form to the

observations.

The most complex distortion models arise from sensor geometry correction.

Taking the Landsat multispectral scanner (MSS) as a basic example, the raw
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data are perturbed by earth rotation, mirror scan nonlinearity, spherical
earth, varlations in platform altitude, roll, pitch and yaw. Most of these
components can be modeled by continuous functions, but one component, the
line-to~line skew Iinduced by earth rotation, is discontinuous at every sixth
line. Furthermore, the distortion model is no longer a simple function but a
composite of several functions that are applied in order. The first correc-
tion function calculates uniform sample spacing in orthographic or Mercator
projection along single scan lines. Then a second correction function moves
entire lines according to the sensor and earth rotation skew for each line. A

third correction for map projection could now be performed if desired.

Two basic techniques for model fitting are in common use today. The
first is to use nominal values for spacecraft location, etc., and produce a
correlated product which has slight deviations from a perfectly mapped
product. Note that the largest deviation is a simple lateral translation,
which can be fixed later by a single point observation. The second technique
is to fit the model according to control points determined by external means.
For our purpose, in which a control point (or reference map) may not be

available, the first technique is preferable.

Digital computation requires that the geometric distortion be represented
in an efficient manner. The method proposed here is to convert the rectified
model to a gridded approximation through the use of resampling methods. There
are approximately three techniques commonly used in resampling of one- or
two-dimensional data; nearest neighbor, bilinear interpolation, and cubic

convolution. These techniques are reviewed in detail in section V.

The above registration/rectification approach requires both analytical
and computer simulated modeling. The simplified version (affine transforma-
tion plus resampling) can be constructed in four months' time, as a first step

toward a more complete modeling.

B. TASK 2 - REGISTRATION AND CHANGE DETECTION OF SAR IMAGES

The task objective is to develop techniques for registration and change

detection with SAR images. These techniques may include SAR image matching to
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other SAR reference images, to visible references, or to FLIR reference
images. Because the problem Is generally quite difficult and little work has

been previously done on the problem, several approaches are proposed. The

results generally apply to both registration and to change detection once

images have been registered.

Two major classes of techniques are proposed. The techniques, called A
and B, share common techniques in matching and differ mainly in the feature
extraction and preprocessing. Because the general matching problem {s so
difficult and has such a broad application, specialized techniques suitable
for a restricted class of situations may be more effective. If specific
knowledge about the scope of images to be encountered is available, the

general solution may be greatly simplified.

Either of these techniques deserves study and consideration, but both are
not well-defined and require considerable research effort. They require
significant experimental work, including computer time and the services of a
full-time applications programmer in addition to the members of the technical

staff who will direct the research.
1. TECHNIQUE A

This technique of registration is outlined briefly in Figure 24. SAR
images are acquired and smoothed and/or filtered by recursive or nonrecursive
image restoration methods [44-48]. Then edge and texture features are
extracted. The edges may be linked and expressed as a line segment data base,
and the texture features may be obtained by convolution with a set of small
window microtexture kernels [49]. These features then go to a segmentation
routine that breaks the image into regions of similar characteristics. The
shapes of the segmented regions are extracted and form the input to the match-
Ing phase of the system. A similar or identical set of operations is per-

formed on the reference image.

The second phase of Technique A is matching. Several major methods are
listed; ln reality a hybrid approach combining some of them may be used. The

method performs shape matching of lines, linear features, vertices, etc., that
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are stored in a data base. Similar methods have been explored by Hughes

Research Laboratories [17, 51-55] and others. Another method is to match

symbolic descriptions of images, in which the structure is represented by
lines, vertices, higher order shape descriptions, and texture. Techniques
such as relaxation labeling/matching are used to find the bhest match. For
certain restricted problems, the signal-processing~based techniques of corre-
lation matching may be effective and offer the inherent advantage of noise
reduction. This method may be useful for matching with a well-defined set of
reference images or objects within an image, but will generally fail with

significant changes between reference and image to be matched.

The entire approach of Technique A follows and expands on previously
demonstrated techniques used for visible-to-visible image matching. It is
hoped that the use of noise suppression combined with textural information
will be sufficient for robust performance even though SAR images are signifi-

cantly noisy and different statistically and visually from visible references.

2. TECHNIQUE B

This technique differs from A in the preprocessing steps. SAR images are
acquired and edge detection/linking is performed as before. Texture feature
extraction is performed, but over a hierarchy of several spatial resolutions
and window sizes (Figure 25). This textural information is input to a segmen-
tation method that attempts to find texture boundaries in the scene. The
texture segmentation is done by unsupervised clustering over the hierarchy of
multiresolution data. This method is motivated by knowledge of the human
visual system, which uses spatial detectors and sensory information over a
range of spatlal resolution in order to discriminate texture boundaries. This

area of study is the subject of current research by several groups [57].

Following texture segmentation, shapes are extracted and iaput to the
various shape matchlng procedures described before. Reference images
(visible, SAR, FLIR, etc.) are processed by a similar sequence (although less

texture information may be needed for segmenting visible data).
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c. TASK 3 - MATCHING SAR IMAGES TO VISIBLE IMAGES

This task Is essentfally a simplified version of Task 2 for the registra-

. tion and matching of SAR images acquired In real-time to ‘a stored visible data

base.
" The method of approach is basically similar to the two techniques

outlined in Task 2, except that we assume the existence of a good quality

P

visible image data-base to which the SAR data are matched. The visible data

can consist of stored imagery, extracted features such as lines, edges,
segmented regions, and ground control points. Other data, such as previously
acquired graphlcs, roads, physlical structures, or map data can be included.
Similar features are extracted from the real-time SAR input and are matched as
described in Task 2, Following the matching, spatial warping and registration

can be performed as described in Task 1.

The advantages of this task as compared with Task 2 is that this is a
much simpler problem that can be accomplished with fewer personnel in a

shorter amount of time.

D. TASK 4 - MAN-MACHINE INTERACTIVE METHOD

This section discusses proposed man-machine interactive methods for image

rectification, system hardware/software requirements, and configurations.

The proposed procedure allows for analytical evaluation and comparison of
various registration algorithms and their performance for the specific generic
system under consideration. In addition, the new procedure utilizes the
inputs of a photolinterpreter (PI) and feedbhack to the system in such a way as

to minimize computer storage and computing time requirements.

Most of the rectification methods used in the past ignore the man-machine
interaction aspect of the problem or try to make a fully automated rectifica-
tion process. However, utilization of the PI in the loop may allow for more
efficient Image registration because the ground truth and specific target
areas can be identified in a simpler fashion. The following proposed approach

to rectification allows for analytical evaluation and comparison of various
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registration algorithms and their performance in addition to the utilization

of a PI's inputs to the system.
1. METHODS OF APPROACH
Onboard sensor data in the form of inflight or preflight information are

available to the various geometrical rectification/registration algorithms.

These data may include limited a priori knowledge of fixed system geometrical

distortions or onboard sensor attitude data. In the new approach proposed
here, general areas of interest for magnification, scale change, comparison
for change detection, etc., are interactively selected from analog hardcopy
images by the PI and used as input to the rectification algorithm. Also,
control point locations corresponding to known areas of the scene and other
points of interest are selected interactively by the PI and used in rectifi-

cation algorithms.

Rectification algorithms proposed here produce geometric corrections
based on existing orientation data and identifiable ground control points
furnished by the PI. Information on the ground control points, furnished by
the PI, could be used in two different fashions: either through parametric

methods or nonparametric methods.

The following is a brief description of the man-machine interactive
methods proposed for the specific system under study. It must be noted that
in practice these methods are applied only to a coarse grid of points distri-
buted through the image. The remaining samples are obtained using resampling

and interpolation procedures for greater efficiency.

a. Orientation Method

In spacecraft-borne sensors, the orientation parameters are continuously
varying functions of time. Thus, to perform good registration of the images,
it is necessary to know these functions with sufficient accuracy. This may be
accomplished in the following manner: approximation, platform stabilization
(costly), interpolation, or geometric modeling. Geometric modeling through

the collinearity condition iIs proposed here to accomplish sufficient accuracy.
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The orientation method could use either the preflight data or onboard
flight data which are recorded at the same time with the sensed images to
generate a new image with all distortions due to aircraft motion removed.
These distortions include the roll, pitch, yaw, and translational movements of

the platform.

b. Parametric Methods

Parametric methods in rectification make use of a polynomial approxima-
tion to relate the original and corrected image coordinates. The ground
coordinates of some identifiable points in the image (ground control points)
furnished by the PI, combined with least—-squares fitting techniques, produce

the coefficients of the approximating polynomial.

C. Nonparametric Method

The nonparametric method of rectification is based on the assumption that
the difference in coordinates between the original image and the corrected
image is a realization of a two-dimensional stochastic field. A simplified
version of this approach is proposed here through an arithmetic-mean tech-
nique, which for each point computes the difference in coordinates between the
original and the corrected image as a weighted average of those differences in

a set of ground control points identified by the PI.
2. HARDWARE CONFIGURATION

As noted earlier, the major problem with images presented to the PI is
that they differ in magnification, orientation, contrast, etc., due to varia-
tions in flight path, sensor response, and ephemeris data. A tactical, ground
based image warp correction and registration system with real-time or non

real-time speed is needed to implement the correction.

Figure 26 shows a possible system hardware configuration. Flgure 26(a)
is the part of the system assumed to be conventional SAR processing. Figure
26(b) shows the proposed additional parts of the system that accomplish the

necessary rectification/registration of the imagery selected by the PI,

Figure 26(a) shows a block dlagram of a typical SAR processing hardware

configuration. The sensor system collects data and stores it in analog form
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in a raw data buffer. For SAR systems, these data may be stored optically on

photographic film or on magnetic tape. An analog SAR processor performs

correlation and filtering of the data, giving a hardcopy output with many

. picture elements (as many as 500 x 500 pixels). A PI views the analog high
resolution image and identifies objects of interest and changes as compared

with previous images of the same general scene.

Figure 26(b) shows the remalning part of the proposed system utilized for
image rectification. Most of the actual correction is implemented digitally.
An analog/digital converter (TV, a CCD array, or similar device) is used to
digitize analog image outputs and store them in a digital image buffer. The
buffer contains sufficient memory to store a few images (on the order of 100)
at the resolution needed for comparison with new or existing data by the PI.
The buffer may consist of fast access RAM (random access memory) or slower but
higher capacity disc or tape digital storage. The buffer also incorporates a

computer for implementing the correction and keeping track of the data.

The image buffer/computer uses the selected data provided by the PI
(utilizing analog hardcopy images) to establish control points in the
digitized digital image data and fit geometrical correction polynomials to
control point locations. Interpolation by bilinear or other algorithms is
used to compute correction dlgitél images between the control polnts. The
result is a digital hardcopy output of selected areas of the analog scene
generally with fewer pixels (on the order of 256 x 256) than the analog scene.
The digital output 1s produced in a form easily overlaid and compared with

previously corrected images.
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